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Abstract--Several problems of three-dimensional fracture mechanics for a planar tunnel-crack
loaded in pure mode I in an infinite elastic solid are investigated. The first is that of the bifurcation
from the fundamental straight configuration of the crack front in brittle fracture, i.e. the possibility
of the appearance of another, curved configuration still possessing the property that the stress
intensity factor be constant along the front. The second is the stability of the same fundamental
configuration versus small deviations from straightness within the crack plane in fatigue. The third
is the (analytic at the start, but numerical in fine) determination of the fundamental "kernel"
appearing in the integral expression of the variation of the stress intensity factor induced by a small
perturbation of the crack front; this topic is considered after (and not before as would seem more
natural) the first two in order to illustrate the fact that investigating the latter does not require a
precise knowledge of that kernel as a necessary prerequisite. The last question envisaged is (again
analytical first, but finally numerical) the calculation of the crack-face weight function in mode I
for the crack configuration envisaged. Gao and Rice's previous works (1985, ASME J. Appl. Mech.
52, 571-579; 1986, ASME J. Appl. Mech. 53, 774-778; 1987, Int. J. Fracture 33, 155-174; 1987,
ASME J. Appl. Mech. 54, 627--634; 1988, In!. 1. Solids Structures 24,177-193) devoted to other
crack shapes have been an important source of inspiration for this study with regard to both the
topics investigated and some of the methods used.

I. INTRODUCTION

Consider (Fig. 1) a plane crack with arbitrary (geometrical1y regular) contour .'7', located
in an elastic body n and loaded in pure mode I through some symmetric system of tractions

Q

..............

Fig. I. Arbitrary plane tensile crack in an infinite body_
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Fig. 2. Tensile tunnel-crack in an infinite body.

or displacements imposed on the outer boundary. The loading being kept constant, let the
crack front be shifted within the crack plane, perpendicularly to itself, by a small distance
e5a(s) depending (in a regular way) upon the position s (== curvilinear length along the
front). Then the initial (mode I) stress intensity factor k(s) at the point s changes by the
amount e5k(s) given, to the first order in the perturbation, by the following formula:

bk(s) = [bk(s)]ou(s)=bu<<)+PVLZ(n;s,s')k(s')[ba(s')-ba(s)]ds', (1)

where [bk(s)]oU(Sl=oU(s) denotes the value of bk(s) for a uniform perturbation equal to ba(s)
and Z(n; s, s') is a function of sand s' which also depends upon the entire geometry of the
body and the crack (including on which portions of the boundary forces versus dis
placements are prescribed), as symbolically indicated by the first argument. Some general
properties of this function are as follows:

I
Z(n; s. s') ~ for s' ---> s; Z(n; s, s') = Z(n; s', s) for all s, s' (2)

. 2n[D(s, s'W

where D(s, s') denotes the Cartesian distance between the points sand s'. The first property
indicates that the integral in eqn (I) does have a meaning as a Cauchy principal value (PV).

The fundamental formula (I) was established by Zakharevitch (1985), Nazarov (1989)
and Rice (1989). In the latter work, Rice in fact extended to arbitrary planar crack shapes
some previous results obtained with Gao (Rice, 1985; Gao and Rice, 1986, 1987a,b; Gao,
1988) for various special cases: semi-infinite and internal circular cracks (loaded in mode
I+ II + III) and external circular crack (loaded in pure mode 1). The work of Rice (1989)
was itself very recently extended to cracks of completely arbitrary, non-planar shapes
including possible kink angles (and also to arbitrary combinations of modes) by Mouchrif
(1994). Property (21) was established in the work of Nazarov (1989) and was also apparent
in the results of Gao and Rice, although Rice (1989) did not state I /(2n) to be the universal
limit of Z(n; s, s')[D(s, s'W for s' ---> s, whatever the shape of the crack front. Property (22)

was proved (for arbitrary plane cracks loaded in pure mode I) by both Nazarov (1989) and
Rice (1989), and extended to arbitrary curved crack geometries and mixed modes by
Mouchrif (1994).

The aim of the present work is to apply the preceding result to the study of various
problems for a tunnel-crack in an infinite body loaded by some uniform opening stress (Je:;
at infinity (Fig. 2). The first one, which will be considered in Section 3, after some prelimi
naries, concerns the possible bifurcation from the straight configuration of the front in
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brittle fracture: can one find any configuration satisfying the condition that the stress
intensity factor be equal to a constant (the fracture toughness) along the crack front, other
than the "fundamental" one where both its front and rear parts remain straight (and move
at opposite velocities)? The answer will turn out to be yes: there is a bifurcation mode
(difference between two possible solutions) which corresponds to a sinusoidal shape of both
parts of the front the "critical" wavelength of which is a characteristic multiple of the mean
half-width a of the crack. This mode is symmetric with respect to the median axis Oz of the
crack; there is no antisymmetric mode, except for a trivial global translatory motion of the
two parts of the crack front in the direction x of propagation.

The second problem (which in fact bears a close relationship to the first one) will be
studied in Section 4; it is that of the stability of the straight configuration of the crack
front: that front being slightly but otherwise arbitrarily perturbed within the crack plane,
will the perturbation subsequently decay or grow? This question is most readily addressed
in the context of fatigue, assuming for instance the propagation law to be that of Paris.
Performing a Fourier transform of the perturbation in the z-direction, one finds that to the
first order in the amplitude of the perturbation, the evolutions of the various Fourier
components are independent of each other; for a given wavelength, the difference of the
Fourier components on the front and rear parts of the crack front always decays, but the
sum grows or decays according to whether the wavelength is greater or smaller than the
critical wavelength of the bifurcation mode evidenced previously. The latter observation is
quite analogous to those made by Gao and Rice, and also Nguyen (1994), about similar
problems. However, since the critical wavelength is proportional to the mean half-width of
the crack and thus increases with time, the wavelength of any Fourier component finally
becomes smaller than it and thus all Fourier components ultimately decay. Another notice
able point is that the curves representing (for a given wavelength) the sum and the difference
of the Fourier components of the front and rear perturbations as functions of the mean
half-width, which a priori depend upon two parameters, are in fact all equivalent modulo
changes of origin and scale.

One remarkable feature of both the bifurcation and instability studies is that a major
part of the analysis can be carried out without explicitly knowing the function Z(n; s, s')
relevant to the case considered, the only ingredients required being a few simple and
reasonable hypotheses about that function. It is, however, necessary to finally determine it
notably in order to obtain the precise expression of the critical wavelength of bifurcation
in brittle fracture. This is done in Section 5 in a somewhat more elegant way than in
Mouchrifs (1994) thesis, by using an equation established by Rice (1989) which provides
the variation of the function Z(n; s, s') induced by some slight variation of the domain
occupied by the crack. This equation is applied here to special movements preserving the
shape of the crack while changing its dimension and orientation. This procedure yields a
second-order differential equation on the Fourier transform of the function Z(n; s, s') ; this
equation is solved numerically and Z(n; s, s') is finally obtained through numerical Fourier
inversion.

The full knowledge of the function Z(n; s, s') is finally used in Section 6 to compute
the crack-face weight function of the tensile tunnel-crack. The principle of the method is to
apply eqn (1) to the particular loading defining the weight function, considering the same
special movements of the crack front as before. This procedure provides partial-differential
equations on the Fourier transform of the weight function in the direction parallel to the
crack front, which can be combined to yield an ordinary differential equation on each
straight line parallel to that front. Again, this equation is solved numerically (on each such
line) prior to final numerical Fourier inversion.

The methods employed in the last two sections are interesting in that they are of
"special" rather than "general" nature in the terminology employed by Bueckner (1987).
This means that they are "economical" in the sense that they avoid the calculation of the
entire solution to the elasticity problems implied (namely that of a tunnel-crack with a
slightly wavy front loaded by some uniform opening stress at infinity or with a straight
front but a loading consisting of vertical point forces exerted on its lips), but concentrate
on the sole feature of interest, namely the distribution of the stress intensity factor along
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the crack front. As a result, the treatment is simpler and more elegant, especially in the
sense that the recourse to numerical computation involved is minimal and limited to some
very final step. Also, it is quite clear that these methods can be employed to solve other
problems of similar type; the calculation of the three-dimensional crack-face weight func
tions for a semi-infinite interface crack, for instance, will be envisaged in a future paper.

2. PRELIMINARIES

In the case considered here of a tunnel-crack, the unperturbed crack front consists of
two straight lines; we shall therefore replace the curvilinear length s along it by the Cartesian
coordinate z±, where the upper index indicates whether the point of the front considered
belongs to its front (x = +a) or rear (x = - a) part. Also, the only geometric parameter
in the problem is the half-width a of the crack; it follows that the influence of the argument
"Q" upon the function Z(Q; s, s') in fact reduces to a dependence of this function upon a.
Furthermore, simple dimensional considerations show that Z(Q; s, s') == Z(a; z±,Zl±) is
positively homogeneous of degree - 2 with respect to its three arguments. Combining this
feature with the obvious symmetries of the problem, one concludes that this function can
be written in the following form :

jZ( '.7+ '+) = Z( . - '-) =f[(.Z' -z)/a]
a,~ ,z a,z,z_

(Z'_Z)2

Z( . + 7'-) = Z( . 7- 7/+) = g[(z' -z)/a]a,z ,":' Q,_ ,'" _

a2

(3)

where, in virtue of eqn (2), the functions f and 9 are bounded for z' ....... z and verify the
following properties:

. I
1(0) =~; f(-Yf) =f(Yf), g(-Yf) =g(Yf) for all 17.

It follows that eqn (l) takes the form:

(4)

f
+x. (z' - z) dz' f+ x- (Zl - Z) dz'+ -x 9 -;- k6a(z'-) a2 - -70 9 -a- k6a(z+)--;j

on the front part of the crack front, where k == (J~.~ is the initial uniform stress intensity
factor; the split of the integral involving 9 into two parts here is licit since the integrand is
non-singular for z' ....... z. The variation of the stress intensity factor on the rear part of the
front is given by the same formula but for the interchange of the upper indices + and -.
Now in the case where 6a(z±) == 6a == Cst, the right-hand side reduces to its first term;
since (k+6k)(z+) = 1T;~Jn(a+6a) then, it follows that:

Also, if 6a(z+) == 0 and 6a(z-) == ba == Cst, in which case (k+bk)(z+) = IT;;,Jn(a+ 6a/2) =
bk(z+) = kba/(4a), the expression of bk(z+) reduces to its third term, so that
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f

+x (-' - -) d-' kba f+ x
9 =----= kba~ = --=. 9(11) df] = ~.

_~, a 0- 4a _ ,

1999

(5)

Combining these elements, one puts the general formula for bk(z f) in the following form,
which will serve as a basis for the analyses to follow:

bk(z+) ba(z+) f+x .(Z' -z) _ ,_ _ + dz'-- =-- +PV .1 - [<'>a(z )-oa(z )]--~~
k 4a _ 'l. a (z - z) -

f+' (-' - 7) d~'+ .. 9 --_: ba(z' -) ~.
_, . a 0-

In particular, for a perturbation of the form:

(6)

(7)

where a and f3 are complex amplitudes and p a real wavevector,t the expression of bk(z+)
becomes, upon use of the change of variable z' == z+ al1 :

bk(z+) _ _ ell!C

-k-~ = [af(q) + f3g(q)] -~-; (8)

the "reduced" wavevector q and the functionsJ(q), .iJ(q) in this equation are defined by:

- f+ J . dll 1+' . dl1
q == pa ; f (q) == ~ + P V f (11 )( e""1 - I)-~- = ~ + 2 j (1])[coS (ql]) - I] ---; ;

-x 1]- 0 11-

fT'l. If'.iJ(q) = ~~ 9(11) e""1 dl] = 2 g(I]) cos (ql1) dl]
-:t.'. 0

(9)

where use has been made of eqns (4J and (4l ). It should be noted that1'(q) and g(q), just
like !(11) and g(f/), are even functions. Also, note that if the Fourier transform fjJ(q) of any
function 4>(11) is defined by:

'-'+x

fjJ(q) == I 4>(1]) el'II' dl]
• -y

(10)

(without any factor I/(2n) or I/J2n), ,c'j(q) is nothing else than the Fourier transform of
9(11) [g(q) == g(q)]. The relation betweenl(q) andl(q) is a bit more complex. To derive it,
it suffices to differentiate eqn (92) twice with respect to q; one then gets:

l"(q) = -2 f'f(I1)COS(ql])dl] = - L~f(l1)e"llldl1 == -l(q)· (11)

Let us finally stress that although we shall not state the explicit values of the functions
!(11), 9(11),J(q), g(q) appearing in the fundamental formulae (6) and (8) before Section 5,
they are completely determined by the geometry considered and must thus be regarded as
data, not unknowns.

t The calculation of 6k(::. ') for a complex perturbation here is purely formal. and will serve in the sequel only
to derive the value of 6k(;:+) for actual, real perturbations through linear superposition; the result will of course
be real then.
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3. BIFURCATION OF THE CRACK FRONT FROM ITS FUNDAMENTAL STRAIGHT
CONFIGURATION IN BRITTLE FRACTURE

Investigating the bifurcation problem requires the expression of the time-derivative of
the stress intensity factor on the front and rear parts of the crack front at some instant
when they are straight but their velocities are non-uniform. Formula (6) does provide the
desired expression of k(z~) [it suffices to replace i5k(ZT), i5a(zT) and i5a(z'±) by k(z+), o(z+)
and o(z'±)], but only for a constant loading (as mentioned in Section I), whereas quasi
static propagation of the crack in brittle fracture requires it to vary with time.t To extend
this expression to the general case of some variable loading, it suffices to add to that part
of k(z+) due to the motion of the crack front, that arises from the variation of the loading,
. . xc ;- _ k . xc IX. h' . ld .I.e. ayyV na - a.l'Y' an , t IS Yle s.

In order for the stress intensity factor to remain equal to k, at all locations just after
the instant considered, the right-hand side here must be zero. The problem is to see whether
the solution to the resulting integral equation on the functions o(z±), supplemented by its
analog on the rear part of the crack front, is unique or not. The difference of two possible
solutions, which we shall call a bifurcation mode and still denote o(z"') for simplicity, verifies
the corresponding homogeneous equation:

a(z+) +PVf+xf(~~ -z)[a(z'+) -a(z+)] dz', +f+ .. 9(z' -z)a(z' )~~ = 0 (12)
4a -x a (z' -z)" -x a a-

(plus its analog on the rear part of the front). The problem here is to see whether non-zero
solutions can be found.

Because of the invariance of the problem in the z-direction, it is natural to introduce
the Fourier transforms of a possible bifurcation mode on the two parts of the crack front,
in the form:t

(13)

The integral equation (12) then becomes, by eqns (7) and (8):

r~ [o:(p)1(q) + f3(p)g(q)] e:= dp = 0 (\lz),

where q == pa as above. This equation and its analog on the rear part of the front are
equivalent to :

t Consid~or instance the case where both parts of the crack front remain straight; then, at every instant,
k(z±) = (J~V na == k, == Cst. so that (J,'; must decrease if a is to increase.

t With the notation of eqn (10), one has :x(p) == (I/(2n»a(?')( -p) and pep) == (I/(2n»a(?-)( - p); but the
notations (x(p) and Pcp) will be preferred for simplicity.
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Fig. 3. Bifurcation modes in brittle fracture: (a) symmetric mode; (b) antisymmetric mode.

{
J(q)rJ.(P) +~(q)f3(p) = 0 (Vp).

g(q)rJ.(p) +f(q)f3(p) = 0
(14)

We are looking for non-zero "Fourier components" [rJ.(p), f3(p)] of a possible bifur
cation mode. For such components, the determinantJ2(q) _g2(q) of the above system must
be zero. Hence the reduced wavelength q must be equal to ±q, or ±qO' where qs and qa are
the positive solutions (dimensionless numbers) of the equations:

(15)

(the existence and uniqueness of these solutions will be established shortly). If
q = ±qs => P = ±qJa, system (14) reduces to rJ.(p) - f3(p) = 0 =>rJ.(p) = f3(p): the bifur
cation mode is symmetric (see Fig. 3a). If q = ± qa => P = ±qaia, eqn (14) reduces to
rx(p) = - f3(p) and the mode is antisymmetric (Fig. 3b).t

To pursue the analysis, it becomes necessary to introduce a few hypotheses concerning
thefunctionsf('1),g('1),](q) andg(q) ; these hypotheses are reasonable and will be confirmed
later when these functions are evaluated numerically. First, let us note that making the
change of variable '1' = q'1 in the definition (92) ofJ(q) and assumingf('1) to be bounded,
one sees that the integral term in that definition vanishes for q ---> 0 so that J(O) = 1/4;
combining the same change of variable and (41), one also concludes that
limq~ + x. J(q) = - Cf). Furthermore it follows from eqns (5) and (93) that the value of g(O)
is also 1/4, and the latter equation also implies that limq~+oc g(q) = 0, the function g('1)
being supposed to be regular. If one makes the additional assumption that the functions
J(q), g(q) andJ(q)-g(q) are monotone on the interval [0, +00], one may conclude that
both fCq) and g(q) decrease on [0, + Cf)], from 1/4 to - 00 and 1/4 to 0, respectively, J(q)
remaining always smaller than g(q). These features are schematically represented in Fig. 4.
It immediately follows that eqns (15) do have unique solutions, and that:

(16)

The first property here means that the wavelength Aa == 2na/qa of the antisymmetric mode
is infinite, so that the latter in fact represents a mere translatory motion of the two parts of
the front in the x-direction. The existence of such a bifurcation mode is a trivial feature
arising from the fact that for a straight crack front, the stress intensity factor depends only
on the width of the crack, i.e. on the relative positions of the front and rear parts of the
front in the x-direction and not on their absolute positions. The symmetric mode, on the
other hand, is non-trivial; the explicit calculation of its wavelength }" == 2na/qs will be
carried out in Section 5.

t Figure 3 may seem paradoxical at first sight because of the backward motion of some points of the crack
front; to resolve the "paradox", it suffices to remember that a bifurcation mode does not represent an actual
movement of the crack front, but the difference between two such movements.
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Fig. 4. Qualitative shape of the functions.1(q) and g(q).

4. STABILITY OF THE STRAIGHT CONFIGURATION OF THE CRACK FRONT IN
FATIGUE

Here the crack will be assumed to propagate in fatigue, the propagation rate being
given by Paris' simple law:

iJa
~.. " = C(Ak)"
('LV

(17)

where N denotes the number of cycles, Ak the amplitude of variation of the stress intensity
factor during one cycle, and C and n positive material constants. The amplitude of the
loading will not necessarily be constant in time. We shall assume the crack front to slightly
depart, at every instant t, from a strictly straight configuration corresponding to some half
width a(t). We shall use the Fourier transforms of the perturbations on the two parts of
the crack front: the distances (a+ ba)(z::t, t) from the median axis Oz to the front and rear
parts of the front will be written in the form :t

(a +ba)(z+ , t) == a(t) +[~ rx(p, t) e1P=dp;

J
-t u

(a+ba)(z ,t) == aCt) + L f3(p, t) eip=dp. (18)

For any time t, let Ak(t) denote the (spatially uniform) amplitude of the stress intensity
factor for the unperturbed tunnel-crack of half-width aCt), and bAk(z±, t) the correction
arising from the perturbation; by eqns (7) and (8),

Ak(t) + Mk(z+ , t) = Ak(t) ( 1+[: {rx(p, tl1[pa(t)] + f3(p, t)g[pa(t)]} :;:) dp).

t Again, with the notation ofeqn (10), a(p) '= (l/(2n))(ja(?' )(-p) and P(p) '= (l!(2n))(ja(?-)(-p).
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The value of the propagation rate of the front part of the crack front is therefore

2003

C[~k(N) +b~k(z~, N)]" = C[~k(N)]" (1 +n[: U[pa(N)]'l.(p, N)

+g[pa(N)]p(p,N)} a~:) dP)

to the first order in the perturbation, where t has been replaced by the more relevant
argument N. Equating this expression to:

a(a+ba) da f+x C''l.
aN (z+, N) == dN (N) + _x aN (p, N) epe

dp,

identifying terms independent of z and proportional to eipe and supplementing the resulting
equations with their analogs on the rear part of the crack front, one obtains:

:; (N) = C[~k(N)]"

:l~ (p, N) = 7J~~) [~k(N)]/l U[pa(N)]'l.(p, N) +g[pa(N)]f3(p, N)} )

(Vp).
ap nC - 1

cN(P, N) = a(N) [~k(N)]"{g[pa(N)]tx(p,N) +f[pa(N)]f1(p, N) J

In the right-hand sides of the evolution equations for a(p, N) and pep, N) here, the functions
tx(p', N) and PCP', N) appear only through their values at the point p' = p. This means that
although for a given wavevector p, the evolutions of the Fourier components a(p, N) and
PCP, N) are coupled, those of Fourier components corresponding to different wavevectors
are independent.

Provided that one knows how the amplitude of the loading varies with N, ~k is known
as a function of a and N; it is then theoretically possible (at least numerically) to integrate
the above system and get a, tx and P (for any value of p) as functions of N. However,
determining tx and Pas functions of a (for a given p) is more interesting, because it turns
out that their expressions are then not only remarkably simple but also independent of the
temporal variation of the loading and the value of the Paris constant C. Indeed, eliminating
dN in the above equations, one finds:

1
Dtx n -
;;- (p, a) = - [l(pa)'l.(p, a) +g(pa)p(p, a)]ua a .

ap n -
;;- (p, a) = - Lq(pa)a(p, a) +f(pa)p(p, a)] ;
oa a

taking the sum and the difference of these equations and integrating, we get:

1
tx(p, a) +pCP, a) { fP(I - dq}
a()+fI() =exp n [f(q)+.q(q)]-

o P PO P pall q

rY.(p, a) - pep, a) { fpa
-. _ dq}

rY.o(p)-Po(p) = exp n paa U(q)-g(q)]-q-

where the subscript 0 indicates initial values.

(19)
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Fig. 5. Qualitative shape of the curves (rt.±!3)/(!J.o ±!3ol = f(a/ao) in fatigue and changes of origin
and scale on these curves.

These formulae allow for an easy discussion of stability. Let us assume the wavevector
p to be positive (the discussion for p < 0 is similar, since the right-hand sides in eqns (19)
are even functions of p). We have seen that ](q) - g(q) is negative; it follows that the
integral in eqn (192) is a decreasing function of a and therefore that the ratio
(rx-f3)/(rxo -f3o) decreases in time; in other words, whatever the value of the wavevector
considered, if the corresponding initial Fourier components of the perturbation on the front
and rear parts of the crack front are different, they will necessarily subsequently tend to
become equal.

Furthermore, Fig. 4 makes it clear that](q)+g(q) is positive for q < qs and negative
for q > qS" Thus the integral in eqn (l9a and the ratio (rx+f3)/(rxo+f3o) are increasing
functions of a for pa < qs and decreasing functions for pa > qs. This means that stability or
instability prevails for the sum of the Fourier components of the perturbation on the front and
rear parts ofthe crackfront according to whether the wavelength Ie == 2n/p ofthese components
is smaller or greater than the "critical" wavelength ).5 == 2na/q,. This instability phenomenon
for large wavelengths was already anticipated in the work of Rice (1985), although the
minimum value of the wavelength for its occurrence was in fact infinite in the case of a
semi-infinite crack (a = + CXJ) considered there. The same phenomenon was also observed
by Gao and Rice (1987a,b) for internal and external circular cracks subjected to appropriate
loadings, and by Nguyen (1994) for the unsticking ofan infinite tight membrane stuck onto
a rigid plate except on a strip of finite width and infinite length loaded by an internal
pressure.

It must be remarked, however, that since the critical wavelength is proportional to the
mean half-width of the crack and thus continuously increases, stability ultimately prevails
for all wavelengths. There are in fact two cases. If the wavelength A == 2n/p of the Fourier
components considered is smaller than the initial critical wavelength Aso == 2nao/q" then the
ratio (rx + f3)/ (rxo+ f3o) will always decrease. If, conversely, I. is larger than Aso , that ratio will
increase until los reaches the value A, then subsequently decrease.

Figure 5, based on these considerations, shows the qualitative shape of the curves
(rx± f3)/(rxo ± f3o) = f(a/ao) (in the second case).t One remarkable property of these curves,
represented in a log-log plot as is done here, is that although they depend upon two

t It must be emphasized that the numbers in this figure do not in any way mean that the representation of
the curves is exact; they are there merely to illustrate the changes of origin and scale discussed below.
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parameters, 11 and pao (as can be seen by writing the upper bound in the integrals of eqns
(19) in the form (pao)Cajao», they are universal in the sense that it is sufficient to know
them for some special choice of these parameters, to know them in all cases. Indeed it
immediately results from eqns (19) that for a given curve (ex + fJ)/(ao+Po) = f(a/ao) or
(a- fJ)/(exo - Po) = l(a/ao):

I. If pao is multiplied by some factor, one gets the new curve by simply shifting the
origin (i.e. the point (a±P)/(exo ±Po) = l,ajao = I) horizontally by the same factor,
and vertically in such a way that it remain on the curve.

2. If n is multiplied by some factor, the new curve is even more simply obtained by
changing the vertical (logarithmic) scale by the same factor.

These transformations are schematically illustrated in Fig. 5.
It finally remains to derive conditions on the initial perturbation ensuring that

Iba(z±, t) [ will always remain much smaller than a(t), as required for the first-order analysis
to be valid. It is equivalent to request that Iba(z+, t) +ba(z-, t) I and Iba(z+, t) - ba(z-, t)1
satisfy the same condition. Sufficient conditions for this to be true are:

fx lex(p, t)+fJ(p, t)1 dp« a(t); fx lex(p, t) -fJ(p, 01 dp« a(t). (20)

Condition (202) is true for any t as soon as it holds at t = 0, since aCt) continuously
increases and for any p, lex(p, t) - pep, 01 is a decreasing function of time.

The situation is more complex for the condition (20d. If ;. < )',0' (ex(p, t) + pep, t)1
continuously decreases; thus:

. • lo-:(p, t) +P(p, t)1 lao(p)+Po(p)1
I. < I·so => a(t) :::; ---a---;----· (21 )

If ic > ;'so, Io-:(p, t) + pep, t) I increases in a first phase and decreases in a second one; it
follows that the maximum of la(p, t) +pep, t)l/a(t) occurs during the first phase. In order
to bound that maximum, let us note that since l(q) +!J(q) :::; Ij2 (see Fig. 4), eqn (19 1)

implies that:

la(p,a)+p(p,a)[ ~ (~)1I2 =>lex(p,t)+P(p,t)1 ~ IO-:o(p)+Po(p)1 (a(t»)II.:-I.
lexo(p)+Po(p)j '" ao a(t) '" ao a o '

now the Paris exponent is always greater than 2 in practice, so that the maximum of
[a(t)/ao)": 1 during the first phase is reached when a(t)/ao is itself maximum, i.e. at the end
of that phase, and its value is then [q'/(pao)]" 2

- 1 == ()F,o)" 2 - 1. It follows that:

;. > )"0 => la(p, t) + pep, 0 I :::; fao(p) +Po(pll (_;~."),,:-1
a(t) ao 1·,0

(22)

Equations (21) and (22) can be summarized in the following single inequality, valid for all
values of A. :

ja(p, t) + pep, t) 1:::; [O-:o(p) + fJo(p) I. Max [I, (-I:_)n:: -I J'
aCt) ao A,o
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and it follows that the condition:
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[where A(p) == 2n/lpl] suffices to ensure that eqn (20 1) will be satisfied for all t.
In conclusion, the conditions looked for are:

(23)

5. CALCULAnON OF THE FUNCTIONS ](q). g(q)./('1) AND g('1)

We shall now proceed to the actual calculation of the functions l(q) and lj(q). This
will allow us, not only to explicitly calculate the critical wavelength of bifurcation 1.$ in
brittle fracture and the curves (':I. + /3)/(':1.0± /30) = f(a/an) in fatigue, but also to evaluate the
functions f(l]) and g(I)) [i.e. the fundamental "kernel" Z(Q; s, .1") == Z(a; z±,z' ±)] and, as a
bonus, the crack-face weight function in pure mode I for the crack geometry considered.

The method that will be used is based on an equation established by Rice (1989) which
gives the first-order variation of the fundamental kernel Z(Q; .1', .1") induced by some slight
perturbation bats) of the crack front within the crack plane. This equation reads:

~

6Z(Q;.I'\,s2) = PV 1_ Z(Q;s\.s)Z(Q;s.s2)ba(s)ds
~]

(24)

where .1'1 and .1'2 are any immubile [(ja(s\) = 6a(s2) = 0] points of the crack front.
Rice's view was that eqn (24) could be employed to determine the kernel Z(Q; .1', .1")

for new crack shapes through numerical integration, starting from some reference shape
for which it would be known. The use we make of it here is somewhat different: instead of
studying motions of the crack front generating new crack shapes, we only consider motions
preserving the original one, though possibly modifying the size and orientation of the crack.
This procedure yields integro-differential equations on the fundamental kernel.

A comparison with the method employed in Mouchrifs (1994) thesis is given in
Appendix A for the sake of completeness. Mouchrifs method is somewhat more heavy
than that used here (as already mentioned in Section 1), although some of the information
it provides is slightly more precise (see below). The final numerical results obtained are
very similar.

5.1. Integra-differenrial equations un rhefimcriolls 1'(1]) and g(l])
Let us first consider (Fig. 6a) a simple translatory motion of the sole rear part of the

crack front, defined by i5a(:' ) == O. i5a(z-) == c: where c: denotes a small parameter; then, by
eqn (3), eqn (24) reads for arhitrary points z t .z7 of the front part of the front:

or equivalently
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a a

z
Fig. 6. Special motions of the crack front: (a) translatory movement of the rear part; (b) rotation

of both parts by the same angle.

(25)

where the changes of variables '1 == (z] -z2)/a and r( == (Zl -z)/a have been used.
Now consider a perturbation of the crack front defined by a rotation of its front and

rear parts by the same angle s about the points zi and zi (Fig. 6b). Then eqn (24) reads

where z~ and z; denote the abscissae of the projections of the points zi, 2i onto an axis
parallel to the new crack front, and a' the new half-width of the crack. It is easy to show
that

and it follows upon use of the same changes of variables as above that the preceding
equation reads

(26)

5.2. Differential equation on the function g(q)
The presence of the convolution products in eqns (25) and (26) strongly suggests the

use of their Fourier transforms. This immediately yields for eqn (25) :

qj(q) = -4g(q)g'(q), (27)

the Fourier transform being defined by eqn (10) [it is reminded that with the notation of
that equation, g(q) == g(q)].
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Fourier-transforming eqn (26) is slightly more difficult. Let us put/(I1) == I'fh(I'f). Then
j(q) = -;j'h(q) = -ih'(q), the integral defining the Fourier transform of h(I1) being under
stood in the sense of a Cauchy principal value. It follows thatfll1(q) = h(q) = iF(q) where
F(q) is an indefinite integral of j(q); to determine the arbitrary constant involved in its
definition, it suffices to note that h(O) = 0 since /(11) is an even function; thus F (0) = 0,
which means that F(q) is the unique odd indefinite integral of j(q). One then has
(f/-;P;g)(q) = 1fiI(q)fj(q) = iF (q)fj(q) where * denotes the convolution product and the inte
gral defining//I'f *g is to be understood in the sense of a principal value, so that the Fourier
transform of eqn (26) reads

[
fj"(q)] ~q fj(q)- -4- = F(q)fj(q). (28)

Quite remarkably, it is possible to explicitly integrate the system (27) and (28) of
differential equations once with respect to q. Indeed, let us multiply eqn (28) by fj'(q)/q and
replace fj(q)fj'(q)/q by -j(q)/4 == -F'(q)/4 in the right-hand side, thanks to eqn (27); we
get:

-"( )-'( ) F( )F'( ) -'2() f2()
fj(q)fj' (q) _ 9 q 9 q = _ q q => fj2 (q) _ !L!L + -q- = Cst

4 4 4 4 .

To determine the constant, take q = 0; then fj(q) = 1/4 and F(q) = 0 as was seen above,
and fj' (q) = 0 since the function fj(q) is even. It follows that the value of the constant is
1/16 so that:

where sgn (q) denotes the sign of q. The choice of the sign before the radical here is dictated
by the fact that for obvious physical reasons,.f(1J) and its Fourier transformj(q) are "bell
shaped" functions so that the sign of the odd indefinite integral F(q) ofj(q) is the same as
that of q.

It is now trivial to eliminate the function F(q) between eqns (28) and (292); the result
reads:

(30)

which is a second-order differential equation on the sole function fj(q).
Unfortunately, integrating eqn (30) seems possible only by numerical means. When

doing this, one only needs to take q in the range [0, + 00], since the function fj(q) is even.
There are then two possibilities: starting from some initial point qo « 1 (taking qo = 0 is
impossible because of the singular character of the differential equation at that point) and
integrating towards the right, or starting from qo » 1 and integrating towards the left. In
the first case, one needs to know the behavior of fj(q) for q~ 0+ as an initial condition.
The derivation of that behavior is somewhat involved and is presented in detail in Appendix
B ; the result is :

where A is a constant, the value of which cannot be found by the present approach but in
fact amounts to y/4- (in 2)/2 (where y denotes Euler's constant), as is shown in Appendix A
using Mouchrifs (1994) method. In the second case, it is the behavior of fj(q) for q ~ + 00

that is required; the derivation is then much easier. Indeed, fj(q) and fj'(q) being assumed
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to vanish at infinity as above, eqn (30) simply reads !J"(q) ~ 4!J(q) near infinity in a first
approximation; excluding the divergent solution proportional to e2\ one concludes that
!J(q) is proportional to e 2'1. A refined approximation may be found by reinserting that
result into the radical of eqn (30) and rewriting that equation as:

(
.i/(q))' (!J' (q))2 _ 2 (e -4'1) '.-_. + -- -4-~+0 - ,
.tj(q) !J(q) q q

expanding !J'(q)/!J(q) in powers of I/q, one easily finds then:

tj'(q) I I (I) . [ I (I)J'-_-.- = -2+ - - --7 +0 - =!J(q) = Cjqe 2'1 1+- +0 --
g(q) 2q 16q- q3 16q q2

for q ---t + 00

(32)

where C is an unknown constant.
Once the function !J(q) is known, j(q) is easily deduced from eqn (27). The function

l(q) can also be obtained from the following formula, which is a consequence of eqns (II)
and (292) and the propertiesl(O) = 1/4,]"(0) = 0 (see above):

The functions I(I]) and g(I]) finally follow from Fourier inversion of j(q) and !J(q) :

I f+ x - . 1 r+ x -
I(I]) = 2n _ x f(q) e-lq~ dq = ~ Jo I(q) cos (q1J) dq;

I f+x . I f+x
g(I]) = -2 . ,tj(q) e-1q'l dq = - !J(q) cos (ql]) dq

n x no

where use has been made of the fact that j(q) and !J(q) are even functions.

(33)

(34)

5.3. Numerical procedure and results
We decided in practice to start from some point qo» I and integrate towards the left

rather than to start from q(l « 1 and integrate towards the right. The motivation for that
choice was based on the behavior of the solution of eqn (30) for q ---t + en. Indeed, that
solution then approximately becomes a linear combination of two components behaving
(again approximately) like e±2\ and only one of these exponentials (e- 2q

) is desired.
Accurate numerical integration cannot be achieved if that desired exponential appears as
the decreasing one, because slight errors in the initial data are then bound to generate an
undesired increasing exponential which will completely conceal the true decreasing solution.
This imposes the choice of an integration towards the left, for which the desired exponential
e'" 2'1 appears as the increasing one.

The value of q(l chosen was 10. That of !J(qo) [or equivalently that of the constant C of
eqn (322)] was adjusted in such a way as to get limq~o+!J(q):::: !J(10-8) = 1/4 upon inte
gration (using the Runge~Kuttamethod of order 4), the value of .ij'(qo) being deduced from
that of !J(qo) through eqn (32 1),
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-0.4

Fig. 7. The functions/(q) and ij(q).

~-r------------------------,

Fig. 8. The curve «(1.+ f3)!(xD+Pol =j"(aiao) in fatigue, for paD = 0.01 and n = 4.

Figure 7 shows the functions l(q) and g(q) obtained numerically. From there, one
immediately derives the values of q, and the critical wavelength of bifurcation )" in brittle
fracture:

q, ~ 0.925 =A, .~ 6.793a. (35)

The value of I. s is remarkably close to that (~5.2 a) found by Nguyen (1994) for the
analogous (but mathematically much simpler) problem of an infinite tight membrane stuck
onto a plate, except on an infinite strip subjected to an internal pressure. Also, Figs 8 and
9 show the curves (':J.±{3)/(ao±{3u) =f(a/au) in fatigue for pau = 0.01 and n = 4 (N.B.
curves for other values of those parameters can be obtained through simple changes of
origin and scale: see Section 4 above).

Finally, Fig. 10 shows the functionsf(l'}) and g(l'}) in the range 0 ~ I'} ~ 10. For larger
values of I'}, one may safely use the following asymptotic formulae:

1 3 In 11 ( 1 ) 1 3 In 11 ( 1 )f(I'})=-+--+O -; q(ll) =---+--+0 - for I'}->+oo.
411 2 11 3 11 3 • 41]3 2 I1 s I1 s (36)

The derivation of these expressions, which is based on eqn (31), is given in Appendix C.
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pao =0.01 . n=4
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Fig. 9. The curve (':/.- (3)/«(1.0 ~ fio) = f(a/ao) in fatigue, for pan = 0.01 and n = 4.
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Fig. 10. The functionsf(lJ) and g(IJ).

6. THE CRACK-FACE WEIGHT FUNCTION FOR A TENSILE TUNNEL-CRACK

We shall finally show that using the numerical values of the functions F(q) and g(q)
obtained previously, one can now determine the crack-face weight function of a tunnel
crack loaded in pure mode I in an infinite body. It is reminded that this expression designates
the function, which we shall denote h(a; z±, M), that gives the stress intensity factor at the
point z= of the front (+) or rear (-) part of the crack front arising from a loading
consisting of two opposite unit point forces perpendicular to the crack plane exerted on the
points M± of the upper (+ ) and lower ( - ) crack lips.

There are of course a number of conventional techniques that could be used for that
purpose. The finite element method is just one example. However, the method which will
be employed here is more elegant in that the use it makes of numerical techniques is
minimal; also. the results obtained are in all probability much more accurate.

In view of the obvious symmetries of the problem, one can assume the points of
application M± of the point forces to be located at (x, y = 0=, z = 0) and the point of
observation ofthe stress intensity factor at (x = +a. y = 0, z) (Fig. II). It is also appropriate
to write the weight function in the two following forms:
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y

Fig. II. Problem defining the crack-face weight function.

W(~,11) x
~ ==-,

a

-
11 == --.

a
(37)

The introduction of H(¢, 11) just serves to work with a dimensionless function. The intro
duction of W(¢, 1]), which was originally suggested by Rice (1989), is more subtle in the
sense that the form of eqn (372) incorporates some known features of the singular behavior
of the weight function, namely the fact that it tends to zero proportionally to~ when
M gets close to the front or rear part of the crack front (x --+ ± a), and also the fact that it
behaves like ~!«(a-x)2 +Z2) for (x, z) --+ (a, 0); in other words, W(~, 1]) is more
regular than the original weight function. This is illustrated by the following set of "boun
dary conditions", which show that W(¢, 1]) reduces to ordinary, non-singular functions on
the lines ¢ = ±1 :

2
W(¢ = + 1,1]) = -----;=f(1]) ;

In
(38)

These "boundary conditions" result from Rice's (1989) remark [combined with eqns (3)]
that the limit of the quantity h(a; z+ , M)!~ for M --+ (± a, 0, 0) is nothing else than
2,,/(2!n)Z(a; z+ ,z' = O±). Numerical results will therefore be given for the function
W (~, 1]); however, the theoretical treatment will mainly concentrate on the function H(~, 1])
because considering W (¢, 1]) would only lead to additional complexities and difficulties.

6.1. Integro-differential equations on the function H(~, 1])
Let us consider the same first movement of the crack front as above (Fig. 6a). Then,

for the loading which serves to define the function h(a ; z+. M). the fundamental eqn (1)
reads for an arbitrary point z+ of the front part of the crack front, by eqn (3 2) :

Now, the stress intensity factor h(a; z'-, M) at the point z'- of the rear part of the crack
front generated by the point forces at M±(x, y = O±, z = 0) is obviously equal to that
generated at the point z'+ of the front part of the front by point forces exerted on the
points Mf(-x,y=O±,z=O), i.e. to h(a;z'+,M,). This means that with the notation
introduced in eqn (37J :
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But c5k(z+) is nothing else than the stress intensity factor corresponding to the situation
where the crack width is 2a + e while the loading remains unchanged, minus the original
stress intensity factor, i.e. by eqn (37)) :

a[1 (x +f,/2 z)J
f, Oe (a+s/2)3 i 2H a+f,/2' a+s/2 ,-=0

Comparing that expression with the preceding one, we get:

(39)

Consider now the same second perturbation of the crack front as above (Fig. 6b), but
assume here that the points zi and Z2 have the same abscissa z along the Oz axis. Then
eqn (1) reads at the point z+ :

Now it is easy to see that if a' denotes the new half-width of the crack and 0'x'yz' the new
"adapted" frame, one has:

{

a' = a+0(s2)

x' = x+SZ+0(f,2)

z' = z+s(a-x) +0(S2),

and it follows that:

Comparison with the previous expression yields:

(40)

6.2. Partial differential and ordinary differential equations on the function H(~, q)
Again, the presence of convolution products in eqns (39) and (40) is an invitation to

take the Fourier transforms of these equations with respect to the variable '1. This yields,
as in Section 5,
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v aH v af} v H(¢, q) _ ~
(I-:;)ay(Cq)+q oq (:;,q)- -2- = 2g(q)H( -¢,q), (41)

for eqn (39) and:

(PH ~ ~ ~ ~
~ (¢,q)+ (I-OqH(~,q) = F(q)H(~, q) +g'(q)H( -~, q)
(t; uq

(42)

for eqn (40).
Since we do not have a single partial differential equation at our disposal, but a system

of such equations, it is possible to eliminate partial derivatives with respect to one variable
in order to get an ordinary differential equation with respect to the other variable, which is
of course much simpler to handle numerically. Thus, differentiation of eqn (41) with respect
to ¢ and elimination of the cross derivative (0 2 H/o( oq)(¢, q) with the aid of eqn (42), yields,
discarding the arguments of the functions for simplicity,

where

a2 fl 3afl ~ ~ afl* ~
(I-~)~ - - --::;-;;- +q[F-(I-~)q]H = 2g~ -qg'H*

0:;2 2 0:; a~

fl*(~, q) =0 fl( -~, q),

(43)

(44)

which is a differential equation with respect to ~. Of course, in order to (numerically) solve
that equation, one must supplement it with its counterpart at the point (-~, q), which
reads:

02 fj* 3 afl* ~ ~ afl ~
(1+0 a(--+2-C~ +q[F-(I+~)q]H*= -2g c¢ -qg'H. (43')

Also, initial conditions are needed at, or rather near (because of the singular character of
the equations) the points ~ = ±1. These can be derived from eqns (38); indeed, near
~ = -1, one gets from eqn (382), with the aid of eqn (372) :

-- Wei; IJ) ,---~ W(- I IJ) F
H(~,IJ)=oJI-(---":--o~v'2(1+~) 7 ' =2 -(I+~)g(IJ),

(I-O"+IJ~ rr+4 7[

so that

(45)

Near ~ = + 1, one gets with the aid of eqn (38 1):

Now (1- ~)/((l-0 2 + 1J2) is a Lorentzian function of f/ with vanishingly small half-width
1- ~ and integral n; it therefore tends to 7[()(IJ) where () denotes the Dirac distribution. It
follows that:
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~- J2
H(~, '7) ~ 2

y1
=t'>('7)!(0) = y~<5('7)

[byeqn (41)] and therefore that:

A A J2
H(~, q) == H*( -~, q) ~ y~ for ~ -+ + 1.

2015

(46)

One can also obtain a differential equation with respect to q by differentiating eqn (41)
with respect to that variable and again eliminating the cross derivative with the aid of eqn
(42) ; the result reads:

aZfj I afj A A afj* A

q- + -2 --;- +(1-~)[F-(I-~)q]H= 2g-~- +(1 +~)g'H*, (47)
aqz uq uq

whose counterpart at the point ( -~, q) is:

aZfj* 1 afj* A A afj A

q-- + -2 -~- +(1 +~)[F-(1+~)q]H* = 2g--;- +(I-Og'H. (47')
aqz uq uq

Since H(~, '7) and fj(~, q) are obviously even functions of '7 and q, respectively, it suffices
here to integrate over the interval [0, + 00[. Anticipating that we shall start from some
initial point qo» I and integrate towards the left, as we did for the function g(q), we see
that we need to know the asymptotic behavior of fj(~, q) and fj*(~, q) for q -+ + 00. It is
easily found upon trial and error, usingeqn (47), that fj(~, q) == fj*( -~, q) is asymptotically
proportional to e-(I-~)q, and a more thorough analysis reveals that, more precisely,

{ [
e-Z(I+Oq]}

fj(~,q) = fjXJ(~)e-(I-~)q 1+0 jq .

In order to determine the function fj XJ(~)' let us insert that asymptotic formula into the
differential equation (43); using the fact that because of eqns (29z) and (32), F(q) =
~+ 0(e- 4q

), we get:

{(1- mfj;;,co +2qfj'oc(~) +qZfjooCO]-Hfj~co+qfjooCO]

+ q[~ - (1- Oq]fjXJ (~)} e-(1 -Oq = 0[q3!Z e-(3 H)q].

This yields the following two equations:

which admit a common solution proportional to (1 -~) -I/Z ; this means that:

(48)

The constant r here is unknown, which means that we shall have to adjust it numerically
in order to reach some "target" upon integration, as we did for the function g(q); again,
that target will be be the values of the functions fj(~, q) and fj*(~, q) at the point q = O.
To derive these values, one may take advantage of the well-known fact that the (uniform)
stress intensity factor generated on the front part of the crack front by opposite unit line
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forces ex~rted_~he lines ~\ = a¢, j' = 0" (~ being a parameter)
(l1",'na).j(a+.\) '(a-x) = (I,\/~)" (I +~)/(I-~); indeed this implies that:

f-x " a dl] I (1+ ¢
H(c 1]) -- = -----= /--

.' }2 / '/1-(
-x a V na" .

, A f+OC IJI + Y

=> H(~, q = 0) == H*( - ¢, q = 0) == H(~, 1]) d1] = r I _ ~,
- f V n S

is

(49)

Let us final1y note that the knowledge of the asymptotic behavior of iJ(~, q) and
iJ*(¢,q) near the lines ~ = ± I [eqns (45) and (46)] al10ws for an interesting check on the
differential equation (47): that equation must automatical1y be satisfied to the dominant
order in I :+ ~ when these functions are replaced by their asymptotic expressions. It is easy
to check that this is indeed true: when one does so, one finds that eqn (47) reduces to eqn
(28) for ~ -> - I and to eqn (27) for ~ -> + I (to the dominant order).

6.3. Numerical procedure and results
Although both groups of equations (43, 43') and (47, 47') can be used to compute

iJ(~, q) and iJ*(~, q), the method based on the latter group is preferable. Indeed integration
of egns (43,43') yields the values of these functions on the lines q = Cst; one must compute
these values on all such lines before finally obtaining those of H(~, 1]) [or more exactly
W(~, 1])] from Fourier inversion. In contrast, integration of eqns (47,47') yields the values
of fj(~, q) and fj*(~, q) on the lines ~ = Cst, and one only needs to know these values on
one such line to get those of H(~, 1]) [or W(~, 1])] on that particular line by Fourier inversion;
in other words. using eqns (47, 47'). one can determine the various functions H(~, 11) = f(11)
(~ == parameter) independentlv o/each other, which results in an improved accuracy.

In practice, eqns (47, 47') were integrated in the same way as eqn (30), i.e. towards
the left, using qo = 10 as a starting point and stopping at q = JO-s. The ratios
(aiJ/8q)(~,qo)/fj(~,qo)and (8iJ*;8q)(~.qo)/fj*(~,qo)were taken equal to -I +~ and
-1- ~ respectively, as imposed by egn (48).t The adjustment of the constant r was a
trivial matter. in constrast to that of the constant C involved in the calculation of the
function {j(q) (see Section 5.3); indeed, since eqns (47, 47') are linear [unlike eqn (30)]. it
was sufficient to first choose r arbitrarily and integrate them to get the corresponding value
of fj(~,q = 0) ~ fj(~.q = 10-"), and then multiply rand al1 values of fj(~,q) by the
"scaling" factor ensuring that egn (49) be satisfied.

Once iJ(~, q) was known, two possibilities could be envisaged for the final calculation
of the desired function W(~, 1]) : either Fourier-invert l{(~. q) to get H(~, 11) and then get
W(~, 11) from egn (372), or evaluate W(~, q) from the formula:

(50)

which is a straightforward consequence of eqn (372), and then get W(~, 1]) by Fourier
inversion. The second solution was preferred because Fourier inversion of fj(~, q) would
have required values of that function well beyond qo = 10 to be known, at least for the
largest value of ~ envisaged (0.8), since its decrease, which is proportional to e-(I-Oq
according to egn (48), is rather slow then. [That problem does not arise for the function
W(~, q) since ,the latter is easily verified, using egns (48) and (50), to decrease proportionally
to e-(}+Oq;Jq, i.e. much more quickly, for q -> + co.]

t The term O(e-'" ''''1 \/q) which appears in that equation was discarded because for the values of ~
considered, which were all between - 0.8 and + 0.8, it was small for q = qo = 10.
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Fig. 12. The curves W(~, Ij) = f(lj) for various values of~.

Figure 12 shows the curves W(~, 11) = /(11) obtained in that way for several values of
~. These curves strongly suggest that the asymptotic behavior of that function for 11 -+ + 00

might be the same whatever the value of~. An extra argument in favor of that co~ecture
is that according to eqns (38) and (36), W(~ = -1,11) ~ W(~ = + 1,11) ~ 1/(2.Jnl1) for
11 -+ +x;. In fact, it is not difficult to check that whatever the value of ~,

I
W(~,I1)--~ forl1-++ oo

2~11
(51 )

(which comes as a nice complement to the numerical results presented in Fig. 12). Indeed,
following the same type of reasoning as in Appendix C, one sees that eqn (51) is equivalent
to W(~,q) ~ -(lnq)/~ for q-+O+ or, because ofeqns (49) and (50), to:

forq-+O+ (52)

where limq _ o+ f.(q) = O. Now one readily verifies that this asymptotic formula is correct by
inserting it into the differential equations (43) and (47), and checking that they are then
identically satisfied to the dominant order in q.
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APPENDIX A: MOUCHRIF'S METHOD FOR EVALUATING THE FUNCTION g(q)-
CALCULATION OF THE CONSTANT A OF EQN (31)

In Mouchrifs (1994) thesis, the method used to calculate the function g(q) [which is connected to the limit
of the Fourier transform fi(~, q) of the weight function for ~ -+ - I, as shown by eqn (45)] was to numerically
solve the following integral equation on the function fi(~, q), which was deduced from the work of Bui (1978) :

(AI)

where K o denotes the classical Bessel function of order O. (In fact, that procedure does not only yield the limiting
values of the Fourier transform of the weight function for ~ -+ - I, but all values of that Fourier transform.) As
mentioned in the text, the resulting numerical values are very close to those obtained by the method described in
Section 5.

One of the referees suggested that fi(~, q) could be obtained by solving the following equation, which he
derived from Bueckner's (1987) work:

(A2)

where C I (q) and C,(q) are unknown functions. In fact, although Mouchrif did not notice that his equation could
be put in such a nice and simple form, eqns (A I) and (A2) are equivalent. Indeed eqn (A2) is equivalent to:

(A2')

evaluating then c'<1l;c~' [paying attention to the fact that Ko(x) diverges logarithmically for x -+ 0+], using the
relation K~(x)+K~(x)!x-Ko(x) = 0 and integrating by parts, one readily gets eqn (AI).

It was also suggested by the same referee that eqn (A2) could be used to derive the asymptotic behavior of
fi(~, q) for q -+ 0+, and in particular the value of the unknown constant A appearing in eqn (31). The procedure
is as follows. First, using the asymptotic expression of Ko(x) for x -+ 0+, namely

where l' denotes Euler's constant [see, e.g. Gradshteyn and Ryzhik (1965)], and assuming fi(~, q) to be bounded
for q -+ 0+, one gets the following asymptotic expression of the function <1l(~, q) defined by eqn (A'2,) for small
values of q:

(
q ) I-I '~I<1l(~,q) = - In2:+1' _I fi(~',q)d~'-L In(I~'-mfi(~',q)d~'

- ~(ln~ +~'-I)[' (~'-0' fi(Cq)d~'

Evaluating then the quantity 8'<1l«( q)!a~' -q'<1l(;, q), one finds that eqn (A'2 ,) reads



Tensile tunnel-crack with a slightly wavy front 2019

(A4)

a[ f+IH(~') ] 2( l)f+1 'f+1a~ PV -1 ~,~; d~' = -~ In~+Y-2 _I H(~',q)d~'-~I In(l~'-WH(~',q)dt+O(q41Inql)

(A3)

for q--+O+.
Now we know, by eqn (52) of the text, that

_ 1 /1+-( ,
H(~,q) = ~ 1_;+O(q"llnql).

-Jrr V ,

It follows that if we replace H(t, q) by (Ijyln) J(l + ~')j(l- n in the right-hand side of eqn (A3), the error
made is O(q4In2q). Making that substitution and calculating the resulting integrals, one gets:

a[ f+ I H' ] /~ ,~ PV _I ~~~~t d~' = y' 2q (~-lnq-y+~+21n2)+O(q4In2 q).

The last step consists in looking for a series expansion of H(~, q) of the form [suggested by eqn (52)] :

(AS)

(A6)
A . I +:t

H(~,q) = ~~_ 2: a"(q)~n.
Jrr(l-el "~O

Substitution of that expansion in the integral appearing in eqn (AS) requires the calculation of the integrals:

f
+ I ~'" d~'

I" == PV ~~ (n = 0, 1,2, ... ).
-I (~'-~)JI-~'2

This is feasible for all values of n, and it is found that I" is a polynomial expression of ~ of degree n-I. This
implies that the term a"(q)~'" in the expression of H(t, q) generates, in the left-hand side of eqn (AS), a term of
degree n - 2 with respect to ~; comparison with the right-hand side of the same equation then reveals that for
n ;;: 4(=0> n - 2 ;;: 2), the coefficient a"(q) is necessarily O(q4 1n' q). It fol1ows that if terms of that order are to be
disregarded, it is sufficient to consider only the first four terms of the series (A6), corresponding to n = 0, 1,2 and
3. Equation (AS) then becomes, upon calculation of the integrals 10 , II, [" I,:

{

U2(q) = rL( -lnq-y+~+21n2)+O(q4In2 q)
, J ~

a2(q)+2u3(q)~ = %(~-lnq-Y+~+2In2)+O(q4In2 q) =0>. ;, . ,. .

a, (q) = 4 + O(q4 In- q)

(A7)

Furthermore, eqns (45) and (46) of the text imply that:

{

~
(l-~)-

.lim -~2~H(~,q) = 1
.; ..... +1

1 rr _
lim -2JJ (1 ,)H«(q) =g(q),--I + +,

It is easy to see that these equations bear the following consequences on the coefficients a,,(q) :

(A8)

Equation (A83) is compatible with eqn (31) of the text, with Ie = yI4-(ln21/2. Also, eqns (A7) and (A8d imply
that the term proportional to q2 1n q in the expression of H(~, q) is J (1- e)jrr(q' 12) In q, in agreement with eqn
(52) of the text.

It is clear that one could derive the expression of the function H(~, q) for q --+ 0' up to any desired degree of
accuracy in a similar way.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE FUNCTION .q(q) FOR q --+ 0+

The aim of this Appendix is to derive eqn (31) of the text. The proofwil1 not use the second-order differential
equation (30), but the fol1owing more convenient (for the present purpose) third-order equation:
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."'( )+ g"(q) - g'(q)g"(q)
9 q q g(q)

16 g2 (q)g'(q)

q'
(BI)

which can be obtained either by differentiating eqn (30) or by directly eliminating F(q) between eqns (27) and
(28).

The first step consists in distinguishing between "major" and "minor" terms in that equation; the procedure
for obtaining that decomposition is essentially heuristic, since the latter depends upon the asymptotic behavior of
g(q) for q ~ 0+, which is precisely what is looked for. Upon trial and error, we are finally led to propose the
following equivalent form of eqn (BI):

."() .'() I .'( )."() 16·'() I 4-() I
g"'(q)+~_!L!L __ =<p(q)==g ~g q + 9 q - g'(q)+~

q q' q g(q) q' q
(B2)

where all "major" terms are gathered in the left-hand side and all "minor" ones in the right-hand side.
We now integrate eqn (B2,) three times for q > 0, formally considering the function <p(q) as known and using

the fact that g"'(q)+g"(q)/q -g' (q)lq2-llq = {(Ilq)[qg'(q)]' -In q}':

I J'-[vg'(u)]'-lnv= <p(w)dw+~
u

"

=> [vg'(v)]' = v In v+vL<pew) dw+cw

u I f" ~,' ~u {3
=>g'(u) = -(1nu-!.)+ - VdvJ <p(w)dw+ - +-2 2 U 2 u

U o I}(J

q' fq du f" f"== 4Inq+Aq'+{3lnq+y+ --;; udv <p(w)dlt
ill) U o I'll

(B3)

where ~, {3, y, A == (~-1)/4, qo, uo, Uo are constants; in fact, in spite of appearances, g(q) depends only on three
arbitrary constants here, because changing the lower bounds of integration vo, uo, qo is equivalent to changing the
integration constants ~, {3, "('.

The asymptotic behavior of g(q) for q - 0+ will now be deduced from eqn (B3) through successive "iter
ations". The first one will consist in introducing a set of minimal assumptions on the behavior of that function,
examining their consequences on that of the function <p(q) defined by eqn (B2,), and finally deducing from there
and eqn (B3) a more accurate description of the behavior of g(q). In a second iteration, we shall reinsert that
refined information into the expression of <p(q) in order to refine those concerning that function, and then re-use
eqn (B3) to further refine those about g(q), and so on. The basic reason why the whole procedure works is that
the triple integration which appears in eqn (B3) is a "regularizing" process, which means that the output is a less
singular function than the input.

Iteration I
Our set of initial hypotheses is:

C
g(O)=~;g'(O)=O;lg"(q)I~- for q~O

q
(B4)

where C is a positive constant; the third assumption here is in fact somewhat overpessimistic, since if g"(q)
behaved as llq, g'(q) would not exist at the point q = O. It is easy to see that eqn (B4) implies that <p(q) is also
bounded by C,!q where C, is another positive constant. Taking then Vo > 0 in order to avoid a possible divergence
of the integral S:, <pew) dw, we see that the latter is bounded by C,lln vi. Since the integral of the logarithm is
convergent at the point 0, we can now take Uo = 0 and see that S~ v dv L, <pew) dw is bounded by C3u'IIn ul, and
then again take qo = 0 and conclude that g duju S~ v du S:, <pew) dw is bounded by C4q'IIn ql. Inserting that result
into eqn (B3), we get:

g(q) = {31nq+y+O(q'llnql).

But eqn (B4,) then implies that {3 = 0 and y = 1/4. Thus eqn (B3) takes the form
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(B3')

Since we now know that the triple integral here is bounded by C4q'IIn 'II, we may conclude the iteration by stating
that:

g(q)=~+O(q:llnql): irtq)=O(qllnql): g"(q) = O(l1nql) for '1-->0 (B5)

Iteration 2
Inserting eqns (B5) into the expression (B2:) of <p(q), one sees that it is bounded by C,q In' 'I, Thus the integral

of that function is convergent at the point 0, so that we can take 1'0 = 0 hereafter. One then easily sees thatndulu J:; I'dI' J:, <p(I1') dw is bounded by C"q4 In' 'I, Using eqn (B3'), we conclude the iteration by stating that:

[which is just eqn (B3') with 1'0 = 0] and that:

for 'I --> 0

(B3")

(B6)

Iteration 3
Using eqns (B6) and retaining only the dominant terms, one sees that <p(q) = 2'1 In' 'I + O(qlln 'II) : inserting

that result into eqn (B3"), one finally gets eqn (31) of the text,

APPENDIX C: ASYMPTOTIC BEHAVIOR OF THE FUNCTIONS /(1)} AND g(II) FOR
l)-->-rX

The asymptotic behavior of/(Ill and g(l)) for 1/ --> + eye can be deduced from that ofti(q) for 'I -. 0+, Indeed,
with regard to g(lll, repealed integration by partst of the integral in eqn (34,) yields:

1 [ sin ('11))]/" -Y I f" ,gUll =; !j(q) .--- - ;-ti'(q) SI11 ('11)) dq
"_1/=-0(1 '1 .. 0

I [ COS(ql))]'/'" 1 e"
= 1rJ ,ti'(q) ---' - ----; I ,ti"(q) cos ('1'1) dq

I I) '/' il ITI)' .11

I [ sin (ql))]F +, I 1'+'
= - ---::- g"(q)-,-- + --;- .ct'(q) sin (q'I)dq

7(11 _ ) 4'=U llrr ~Il

the bracketed terms here vanish because of various properties of ?I(q) mentioned above, Now eqn (31) implies
that:

I
g"'(q) = 1 +g(q),

~q

where
3q J

g(q) = '2 1n ' q+O(qllnql) for '1-->0:

insertion of that result into the preceding expression and further integration by parts then yields

I "" sin 'I' 1 r" . ('I')gUll = -'-1 -,-dq'+- ii 7
7
' sin 'I' del

27(1/' ... (\ q 7014 oJ 0

I I [ ( " J' -., 1 f+' I ('I"
=

41
1' -'IT~ 9 ~1)cOSq'" +----:;- -it -;)cosq'dq'

,f " ·0 n'l. 0 I) 7!

1 "

- ml' t J ('J'g" 'I, sin 'I' dq'
'I I},

I I j't. I ."('I), , ,
= 4'1; - ITI)' 0 ~H 'ry SI11q dq,

t Note that we implicitly use here the fact that the only singularity of the function ,ti(q) is at the point 0
[because the differential equation (30) is singular only there],
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Since q'/'1---> 0 for '1---> + OJ, whatever the value of q', one may replace g"(q'/'1J here by its asymptotic expression,
namely 31n (q'/'1)/(q,/'1) +o ('1/q') = -3('1ln '1)/q' + O('1llnq'l/q'), and the preceding equation becomes

I 3 In '1 f+x sin q' ( I ) I 3 In '1 ( I )g('1)=-+-- --,-dq'+O - =~+--+O -,
4'1 3 7r'1 5

0 q '1 5 4'1' 2 '1 5 '1 5

which is eqn (362) of the text.
To derive the asymptotic behavior of the functionf('1) (for '1 ---> + ex)), one must first obtain that of j(q) (for

q ..... 0+), which readily follows from eqns (27) and (31):

Equation (36,) of the text then follows from a reasoning quite analogous to that just presented for the function
g(r,).


